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1. Introduction

In this work, we investigate the asymptotic stability of an overhead crane system
consisting of a trolley of mass m, controlled in position and velocity at x = 0.
The trolley moves along a rail under the influence of a nonlinear force F', while a
flexible cable of length [, with variable tension D, supports a heavy load of mass
M . This setup can be found in various applications, such as overhead wire current-
taking devices in trolleybuses, streetcars, and railways, where an orientable rod
fitted with a grooved roller or sliding contact transmits electrical power. A similar
configuration exists in moving carriages, where a suspended mass behaves like a
pendulum (see Belunce et al. [1] and references therein). In such cases, the moving
motor is often assumed to be frictionless.

Several studies have analyzed the linear behavior of such structures, particularly
focusing on strong and uniform stability using Lyapunov’s method, Shkalikov’s
approach, and Huang’s method (see, e.g., [3, 5, 10, 11, 12]). For instance, Conrad
and Mifdal [3] demonstrated that a hybrid system modeling an overhead crane
with linear boundary conditions is strongly stable but not uniformly stable when
the control depends solely on the trolley’s position u(0,t) and velocity u:(0,t).
To achieve uniform stability, the cable’s rotational velocity at x = 0 must be
incorporated into the control law (see Mifdal [7]).

However, when subjected to large displacements due to severe loading, linear
models fail to capture the true dynamic behavior of the system. In such cases, the
assumption of small perturbations is no longer valid, and geometric nonlinearities
must be considered for accurate modeling. These nonlinearities significantly alter
the system’s behavior compared to its linear counterpart.

Despite the importance of nonlinear boundary control in engineering applica-
tions, such studies remain rare in the literature. In the nonlinear setting, Saouri [10]
examined the strong stability of an overhead crane model under velocity-dependent
nonlinear feedback control.

This paper introduces two major novelties compared to previous works:

e A nonlinear feedback control law, incorporating both velocity and position
dependence:

F(t) = = f(u(t,0)) — g(u(t, 0)).

e A distributed viscous damping term &(z)u(t, x), which affects the system’s
total energy and plays a crucial role in stability analysis.

Unlike previous studies, we adopt a different methodological approach to extend
Saouri’s results [10] and further explore the stability properties of the crane system
under nonlinear feedback.
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The principle of virtual work states that the total work of internal and external
forces is always equal to the work of acceleration forces for any infinitesimal virtual
displacement du (see Holzapfel [4]). In this model, the virtual work of external
forces is given by:

VE> 0, Vou, W, = —f(u(t,0))u(t,0) — glu(t,0))du(t,0).

The governing partial differential equations (PDEs) for the trolley-cable-load
system are:

u'(t,x) — (D(x)ug(t, x)), + () (t,2) =0, t>0, 0<z<I, (1.1)
—D(0)uy(t,0) +mu"(t,0) = F( ), t>0, (1.2)

D(1)ug(t, 1) + Mu"(t,1) =0, t>0, (1.3)

w(0,2) = up(x), u'(0,2)=wu(x), 0<uz<I, (1.4)

where ' = % denotes the time derivative, and the subscript x represents the spatial
derivative. Moreover,

e u(t,x) represents the cable’s displacement along the curvilinear abscissa x.
e £(x) > 0 is a positive damping function, ensuring energy dissipation.

e D(x) is the variable tension in the cable, belonging to the Sobolev space
H'(0,1) with D(z) > D(0) > 0.

e F(t) is the nonlinear feedback force applied at z = 0.
The functions f and ¢ satisfy the following properties:
e [ is a monotone increasing function, belongs to C?(R), and satisfies f(0) =
e yf(y) > 0 for y # 0, ensuring energy dissipation.
e The function f(y) satisfies the following growth condition:
()| = Cy?, for |y <, (1.5)
where C,( > 0.

e g € C?*(R) and satisfies:

(4
/ g(z)dz >0, Vi eR. (1.6)
0
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The remainder of this paper is structured as follows. Section 2 establishes well-
posedness of the system using the Cj-semigroup approach and analyzes Lyapunov
stability. Section 3 proves trajectory precompactness for initial conditions in a
dense subset of the Hilbert space. Section 4 characterizes the w-limit sets and
demonstrates that any classical solution tends to zero, ensuring asymptotic stabil-
ity. The conclusions of our study are summarized in Section 5.

2. Preliminaries
We introduce the following Hilbert space:

H = H'0,1) x L*(0,1) x R?,

equipped with the inner product:

1 1
(21, 20)n = / vV do + / D(u1)z(u2)y do 4+ Mming + mxixe,
0 0

where z; = (u;, vi,m;, x:)* for i € {1,2}. We denote the associated norm by || - ||%.
Next, we introduce the linear operator A, : D(Ay) C H — H, with domain:

D(Ao) = {z = (u,v,n,x)" € H*(0,1) x H'(0,1) x R* : n=wv(1), x =v(0)

(2.1)
The operator Ay is defined as follows:
v
Y (D(z)ue (), — &(2)v
v
Ay 0 _&ux(l) . (2.2)
D
m
We also introduce the nonlinear operator Ay, on H, defined by:
U 0
v 1 0
‘Afg n - E 0 (23)
X —f(x) — g(u(0))

Thus, the full operator governing the system, denoted by A, is given by:

A=A+ Ay, (2.4)
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Notice that A is a nonlinear operator with domain D(A) = D(Ay). Now, the
system (1.1)-(1.4) can be rewritten as the following semilinear evolution problem

in H:
L2(t) = Az(t), ¢t>0,
{Z(O) =2y € H, (2:5)
where
2(t) = (ul 1), 00, 1), (), x(1)",  2(0) = (uo, ur, 1m0, x0)" - (2.6)

We now establish the well-posedness of the system by proving that 4y generates a
Cp-semigroup of contractions.

Proposition 2.1. The operator Ay defined by (2.1)-(2.2) generates a Cy-semigroup
of contractions on H, denoted by {T'(t)},-

Proof. We first show that A, is a dissipative operator. Let z = (u,v,n,x)"
D(Ap). We compute:

[

(Aoz, 2)n :< (D(x )_u%(( )))a: 1)§($)v |

Ua(
D( O UI(O)

= —/1§(w)v2dx <0,
0

after integration by parts. Thus, Ay is dissipative. Next, we prove that Ay is max-
imal dissipative. Let (c, i, v,0)T € H. We need to find a unique z = (u,v,n, x)*
D(Ap) such that:

< I3 < 2
~_—

(I = Ao)(u,v,1,x)" = (a, p,v,0)". (2.7)

This is equivalent to solving the following system:

v=u— (2.8)
v=n+ D]S)ux(l), (2.10)
o=x- Dslo)uz(O). (2.11)

We define the function:
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Multiplying (2.9) by a test function ¢ € H'(0,1) and integrating by parts, we
obtain the weak formulation:

a(u, @) =1(¢), Vo€ H'(0,1), (2.12)

1
a(u, 3) = —D(L)up(1)$(1) + D(0)ua(0)(0) + /0 A@)u(x)é(x) + D(@)ug () s (),
1
I(6) = /0 (4 + 0l (x)) i

Thus, by the Lax-Milgram theorem, there exists a unique v € H'(0,1) such that
(2.12) holds for all ¢ € H'(0,1). Since u is uniquely determined, v follows from
(2.8), and n, x from (2.10) and (2.11), ensuring that I — A, is surjective. Thus,
Ap is maximal dissipative. By the Lumer-Phillips theorem, Ay generates a Cy-
semigroup of contractions on H.

Due to Proposition 2.1 and the fact that Ay, is locally Lipschitz continuous (since
it is continuously differentiable on H), Theorem 1.2 in Pazy [9, p. 184] ensures the
following result:

Proposition 2.2. For any initial condition zy € H, there exists a unique mild
solution z € C([0,T],D(A)) N C*([0,T),H) of (2.5) (where T >0 depends on z),

giwen by the variation of constants formula:
t
2(t) = ez +/ =94 g, (2(s)) ds, te(0,T). (2.13)
0

Now, the total energy of the system (1.1)-(1.4) at time ¢ is defined as:
E(ta U) - Ecrane(t7 u) + Econtrol(tu u)v (214)

where

Ecrane (ta U) =

N | —

{/Ol(ul)Qda: + /01 D(x)uidz + M(u'(1))* +m(u'(0))*], (2.15)

and

u(0)
Brontro(t, 1) = /0 9(Q)dC. (2.16)
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The term E...n. represents the mechanical energy of the system without external
damping. It is composed of the kinetic energy:

l%:%[ﬁlwﬂm+aawu»%+mw«mﬂ,

and the elastic potential energy:

1
E, = 5/0 D(x)uidz.

Consequently, the dissipation of the total energy is given by:

d
CB(t ) = ~f(u ‘/5 12 dx < 0. (2.17)

Equation (2.17) implies that the energy is decreasing, making it a good candidate
for a Lyapunov functional for (2.5). We consider the following Lyapunov function:

m

1 1 1 1 u(0) M
V) = 5 [@Pde+ g [ Dpddnt [T g0+ 1)+ T WO
2 /o 2 /o 0 2 2
(2.18)
The functional V is a Lyapunov function for any initial condition zy € H. Indeed,

since z is a classical solution on [0,7], we can differentiate V along the classical
solutions and obtain:

$V(U) flu !/5 2 da < 0. (2.19)

Thus, for any initial condition zy € H, (2.5) has a unique global mild solution. The
family of operators {S(t)},5, defined on H by:

S(t)z = (1) (2.20)

is a strongly continuous semigroup of nonlinear operators in H (see Pazy [9]).
Hence, the system (2.5) is Lyapunov stable.

3. Precompactness of the trajectories
Lemma 3.1.  Suppose that z(t) € C?*([0,00[,H), then it follows that ¥(t) =

%Z(t) € C1([0,00[, H). The evolution problem

%m@:mm@+jm@wp (3.1)

T(0) =T, € H, (3.2)
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corresponds to the following PDE system:

u"(t,x) — (D(z)ug ), (t, x) + E(x)u” (t,2) =0, x€(0,1), t>0, (3.3)
—D(0)ul(t,0) + mu" (¢,0) = —u"(¢,0) f'(u'(¢,0)) — u'(t,0)¢'(u(t,0)), t>0

D) (t,1) + Mu"(t,1) =0, >0 .
W' (0,2) = uy(z), u’(0,z) =uj(z), =xe€(0,1). (3.6)

admits a mild solution U = [v,u" 1/, X']" € H for any initial condition U(0) =
Uy € H. Furthermore, if o € D(A) (hence, 2o € D(A?)), then U(t) is a classical
solution.
Proof. We begin by differentiating system (2.5) with respect to time. The function
U satisfies the system (3.1)-(3.2), where:

0
0
0

—X'f"(x) — xg'(u(0))

Each term in Ay, (t, ¥) involves functions of the form x¢'(u(0)) and X' f'(x). From
Proposition 2.2, we know that z(t) € C*([0,T),H), meaning that x(¢) and u(t,0)
are continuously differentiable in time. Moreover, since ¥(t) € C([0,T),H), it
follows that x/(¢) is also continuously differentiable in time. Since f’ and ¢’ are
assumed to be C!, their compositions with these functions remain continuously
differentiable. Therefore, by the continuity of differentiation under compositions
and products, we conclude that:

Ap, (t,0) = (3.7)

As, € C([0, +00], H).

Thus, ./Zlfg is continuously differentiable in time. Furthermore, it is easy to prove
that .[lfg is Lipschitz continuous in #H, uniformly for ¢ € [0, T] for any T' > 0. By
applying Theorem 1.2 in Pazy [9], p. 184, we conclude that there exists a unique
global mild solution W(t) of (3.1)-(3.2) for every ¥, € H, given by the variation of
constants formula:

t
U (t) = e A(2) + / e(te)AO%Afg (2 (€)) de.
0

This result follows from the differentiation of equation (2.13) and the application
of Corollary 2.5 in Pazy [9], p. 107.
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Finally, ./Z(fg is continuously differentiable and if 2y € D(A?), then by Theorem 1.5
in Pazy [9], p. 187, ¥(¢) is a classical solution, and thus it satisfies the problem
(3.3)-(3.6).

The goal of the following theorem is to establish the precompactness of the trajec-
tory v(z) in H. Specifically, we show that for any initial condition 2y € D(A?),
the trajectory remains in a bounded subset of D(A), namely

B={VecDMA)[[¥][x<e},

where € > 0 is a constant independent of ¢. Since D(A) is compactly embedded
in H, this implies that every sequence along the trajectory admits a convergent
subsequence, proving its precompactness.

Theorem 3.2. For zy € D(A?), the trajectory v(2q) := U05(t) 20 is precompact.
Proof. To prove the precompactness of the trajectory v(zp), it suffices to show
that

B={V e DA) | [Vl < e(llzolls, [[Woll)},  €>0,

is uniformly bounded over time. This is equivalent to proving that the energy-like
functional V(¥(¢)) remains uniformly bounded over time (see Lemma 3.3 in [8]).
By multiplying equation (3.3) by u”, integrating by parts over [0, 1], and using the
boundary conditions, we obtain:

ﬁV((D=UﬁﬁMWWOD—W@®’W@®WWO)
— f/(u'(t,0))(u"(,0)) /§ z))*dx, Vt>0. (3.8)

Since the last two terms are non-positive due to the assumptions on f and &, it
follows that:

d
dt

Integrating over [0, ], we get:

V() < u(t,0)g(u(t,0)) — u"(t,0)¢ (u(t, ) (£,0), ¥t>0.  (3.9)

V(¥(t)) < V(¥(0)) +/0 v’ (7,0)g(u'(7,0))dr —/0 "(7,0)g (u(r,0))u'(1,0)dr.

(3.10)
Rewriting the first integral:

/0 (7. 0)g (7. 0) )dr = / u(/(t’o) g(w)duw.

u/(0,0)
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To ensure this integral is uniformly bounded, we justify that «/(¢,0) is uniformly
bounded. This follows from the Lyapunov function:

V() = [ /O () + /O D)+ M) + m(u'(O))Q] + /0 " e,

2
Since 4V (z(t)) < 0, we obtain V(z(t)) < V(z) for all ¢ > 0, ensuring that u’(t,0)
remains uniformly bounded. Since ¢ is continuous, the integral remains bounded.
For the second integral, using u”(7,0)u/(7,0) = 1L («/(7,0))?, integration by parts
gives:
t

[0 w00 = [3 06007t 0)

—/O 2 (W (7,0))* ¢" (u(r,0)) dr.

Since u/(7,0) and ¢'(u(7,0)) are bounded, the first term remains bounded. For the
second term, the Sobolev embedding H?(0,1) < C(0,1) gives:

/0 2 0(7,0))°" (7, 0))dr| < C /O 1/ (7,0) *dr.

Using | f(«/(¢,0))| > Cu/(t,0)?, we deduce:

+oo

/ o) Pt < é ' (£, 0))l (1, 0)dt.
0 0

d
Since EV(\I!(t)) is integrable on [0, +oo[, it follows that u/(¢,0) € L3(0,+00),
meaning that the second integral remains uniformly bounded. Thus, we conclude
that V(¥(t)) is uniformly bounded, and therefore, by Lemma 3.3 in [8], the function
t || U (¢) ||% is also uniformly bounded. Now, since u(t, -) is bounded in H?(0, 1),
and using the compact embeddings

H?(0,1) << H"(0,1) << L*(0,1),

we deduce that the set of trajectories y(zp) is relatively compact in H. Since
V(z(t)) < V(zo) for all t > 0, it follows that the bound e depends only on the
initial norms ||zo|lz and [|Wyl|, but not on time. By the compact embedding
property, every bounded sequence in D(A) admits a convergent subsequence in H.
Thus, v(z0) is precompact.
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We have previously established the precompactness of the trajectory v(zo) when
20 € D(A?%). We now aim to generalize this result to the broader case where
2o € D(A), proving that the associated trajectory remains in a relatively compact
subset of H. This generalization relies on an approximation by elements in D(A?)
and the use of compact embeddings adapted to this level of regularity. We begin
by establishing the density of D(A?) in D(A), which is essential for extending the
results previously obtained for D(A?) to the more general case of D(A).

Lemma 3.3. The space D(A?) is dense in D(A), i.e., for every z € D(A), there
exists a sequence (z,) C D(A?) such that:

zn — 2z in D(A), (3.11)
U, =Az, -V =Az inH. (3.12)

Proof. Since D(A) is given by:
D(A) = {z = (u,v,n,x)" € H*(0,1) x H'(0,1) xR* = n=0(1), x=0v(0)},

we construct an approximating sequence (z,,) C D(A?).
Since H?(0,1) is dense in H?(0,1) , we can choose a sequence (u,) C H?(0,1)
such that:
u, —u in H*(0,1).

We define v,, = u/, and since H?(0,1) is dense in H'(0, 1) ensuring that:
v, wv=1u"in H(0,1).
Since v,, € H'(0,1), it follows that:
N =0v,(1) =>n InR, x,=v,(0)—x inR

Thus, the sequence 2z, = (Un, Vn, M, Xn)? satisfies z, — 2z in D(A).
Now, we check the convergence of Az,. By definition,

2O, 2(0)
Since u,, — w in H*(0,1) and v, — v in H'(0,1), we have:

(D(2)tnz)e — E(z)vy = (D(2)uy), —E(z)v  in H0,1).
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Moreover,

Upo(1) = uy(1) In R, w,,(0) = u,(0) inR,
ensuring that:

Az, - Az inH.

Thus, the sequence (z,) satisfies (3.11) and (3.12), proving that D(A?) is dense in
D(A).
Theorem 3.4. For any zy € D(A), the trajectory v(zo) := Up0S(t)z0 is precom-
pact in H.

Proof. According to Lemma 3.3, there exists a sequence (zn0)neny C D(A?) such
that:

lim z,0 =20 and lim Az, = Az.
n—-+0o n—-+o0o

Set z,(t) = S(t)zno. Since V,,(0) = Az, it follows that:
lim ¥,(0)=Az in H. (3.13)

n—-+4o0o

Since zp9 — 2o in D(A) and Az,g — Azy in H, it follows that the sequences
(2n0)nen and (¥,,(0))nen are uniformly bounded in H.
By applying the uniform bound:

sup || W (t) [[n< C,
>0, neN

it follows that U, is bounded in L*([0, +o00[, ). By the Banach-Alaoglu theorem
(see Cazenave [2]), there exists Z € L*(]0,+oo[,H) and a subsequence (z,x)ren
such that:
U =2 in L>([0, +o00[, H).
For any y € ‘H and ¢t > 0, it follows that:

t

lim [ (W (r), g — /0 (7). )

k—+o0 0

Thus, t
lim (zuelt) — 20a(0), y) = < / z<r>dny>ﬂ.

k—+o00

Since z,(t) — z(t) in H for all ¢ > 0 (by a consequence of Proposition 4.3.7 in

[2]), we obtain: t
(z(t) — 2(0),y)y = </O 2(7)d7’y>7{.
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Since y is arbitrary, it follows that:

dﬂ—zmﬁiééhﬂr (3.14)

Differentiating (3.14), we obtain ¥ = Z, ensuring that z € C'([0, +o00[, H), so
that ¥ € L>([0, 00|, H), implying that || ¥(¢) |3 is uniformly bounded.
Since z(t) is bounded in D(A) and using the compact embedding:

D(A) —— H,

we conclude that any sequence extracted from ~(zp) admits a convergent subse-
quence in H, proving precompactness.

4. Characterization of the w-limit set and asymptotic stability

The goal of this section is to characterize the set of possible accumulation points
of the system’s trajectories as time tends to infinity. We introduce the w-limit set
w(2p), which consists of all possible accumulation points of the trajectory S(t)z, as
t — +o00. A key property in [2] of w(z) is its invariance under the semigroup S(t),
ensuring that any trajectory starting from an element of w(zy) remains within the
set. Additionally, the Lyapunov function V is shown to be non-increasing along
the trajectories and converges to a limit v(zg) as t — +oc.

To identify w-limit sets, we analyze trajectories along which V remains constant.

d
We introduce the largest S-invariant subset of the set where %V(t) vanishes, de-

noted by €2, and establish the inclusion:
w(zo) CQ, Vzy€H.

This inclusion provides a framework for further characterizing the asymptotic be-
havior of the system. The set €2 is defined as the largest S-invariant subset of the
states where the Lyapunov function V' remains constant:

Q:{z:meJﬁEH’%W@zo}

Proposition 4.1. Under the given assumptions on f and &, the set §2 is given
by:
Q:{quameHMMeR}

Moreover, if u(0,t) =0 for all t > 0, then:

Q= {0}
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Proof. From the dissipation equation:

d ! / ! / 2
GVE0) = =W ) - [ e (4.1

and the fact that € is S-invariant, we must have:

fW@WN®+A€@Wﬂ@ﬂm=O (4.2)

Step 1: Implication for u'(0)
Since f(y) is monotone increasing and satisfies yf(y) > 0 for y # 0, it follows
that:

f(W(0)u'(0) >0 if «'(0) # 0.
This contradicts equation (4.2), implying that:

u'(0) = 0.

Step 2: Implication for /() in (0, 1)
Since {(z) > 0 for all z € (0,1), if v/(x) # 0 on a non-negligible subset of (0, 1),

then:
/ £(x )V2dz > 0.

Again, this contradicts equation (4.2), so we conclude that:
u'(x) =0, Ve (0,1).
Step 3: Conclusion on u and on y,n,v
Since u/(z) = 0, it follows that w(z) is constant, i.e., u(x) = uy for some
Uso € R.
From the boundary conditions:

x=u(0)=0, n=u(1)=0.

Since v = v/, we also conclude that:

Step 4: Condition for us, =0
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If we further assume u(0) = 0, then the only admissible constant solution is
Uy = 0, leading to:
Q = {0}.

Thus, the only possible elements in {2 are:
0= {(um,o,o,()) cH ’ oo € R}.

Theorem 4.2. For all zg € D(A),

lim z(t) = 0.

t——+o0

That is, the system (2.5) is asymptotically stable.
Proof. From the previous section, the trajectory v(zp) is precompact, implying
that w(zp) is nonempty. Moreover, we established that:

w(zo) C Q.

If Q = {0}, then necessarily:
w(z0) = {0}.
This means that there exists a sequence (t,)nen such that:

lim ¢, =400, and lim z(¢,) =0.
n—+o00 n—+oo

Since V is decreasing along trajectories, we have:

li = li =0.
)= 3 0)
Since V is a continuous function and non-increasing along trajectories, its limit as
t — 400 must also be 0:

lim V(z(t)) = 0.

t——+o0
Since V(z) is positive definite, this implies:

lim z(t) = 0.

t——+o0

5. Conclusion
In this work, we analyzed the asymptotic behavior of a controlled system gov-
erned by a partial differential equation with boundary damping. By constructing
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a suitable Lyapunov function, we established its monotonicity and derived key dis-
sipation properties that allowed us to study the long-term evolution of the system.
An important step in our analysis was the characterization of the w-limit set, which
consists of all possible accumulation points of the trajectories as time tends to in-
finity. By leveraging the invariance properties of this set and using the dissipation
equation, we showed that under the given conditions on f and &, all solutions con-
verge to a set of equilibrium states. More specifically, we demonstrated that the
velocity and boundary terms vanish asymptotically, reducing the system’s dynam-
ics to a stationary state. Furthermore, we proved that if the additional condition
u(0,t) = 0 for all ¢ > 0 holds, then the only possible equilibrium is the trivial so-
lution, ensuring strict asymptotic stability. Our results highlight the fundamental
role of energy dissipation in stabilizing the system and provide a framework for
ensuring that all trajectories converge to equilibrium.
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